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Abstract—Distribution systems are currently facing steep oper-
ational challenges as a result of the rapidly increasing integration
of renewables and other distributed energy resources (DERs)
at both the primary and secondary circuit levels. Distribution
utilities and system operators have traditionally had some visi-
bility of their primary circuits using low-frequency supervisory
control and data acquisition systems, and they have had very
poor if not zero visibility of the secondary circuits where the
presence of DERs is constantly increasing. Therefore, this paper
presents simulation studies to demonstrate the benefits of an
advanced, high-fidelity sensor technology, called as the Meta-
Alert System (MAS), developed by Electrical Grid Monitoring,
Ltd. (EGM), on the distribution grid. First, a reliable model of the
EGM sensors is developed, and then two use cases—distribution
system state estimation (DSSE) and fault identification—are
simulated to evaluate the performance of the MAS technology.
Simulation results on the Electric Power Research Institute J1
feeder demonstrate that the MAS can effectively participate in
system-level DSSE programs and can detect and locate faults
faster than traditional distribution protection schemes.

I. INTRODUCTION

As a result of the rapidly increasing integration of renew-
ables and other distributed energy resources (DERs) at both
the primary and secondary circuit levels, distribution systems
are currently facing steep operational challenges [1], such as
poor network voltage regulation, peak demand management,
and resilient operation. These challenges are compounded by
the fact that distribution system operators typically have poor
visibility of the secondary circuits and only some visibility of
the primary circuits via low-frequency supervisory control and
data acquisition systems. Further, unlike transmission systems
which have sufficient integration of phasor measurement units
for fast and reliable network awareness, distribution systems
have very low—if not mostly zero integration of such sensor
units because of their very large numbers of nodes [2]. In
recent years, there have been some research in the field of
distribution system monitoring, control and data analytics [3],
[4]. However, the advanced sensors deployment for the real-
time monitoring and management of the distribution systems
is still in a very early stage.

Therefore, this paper presents the work done through a
collaboration between the National Renewable Energy Labora-
tory (NREL) and Electrical Grid Monitoring, Ltd. (EGM) [5],
through Shell, Inc.’s GameChanger program at NREL (GCxN)
[6], to model, simulate, and analyze the benefits and improve-
ments from EGM’s Meta-Alert System (MAS) for fast distri-
bution system state estimation (DSSE) and rapid identification
and isolation of faults in electrical networks. The functions
and capabilities of EGM’s multi-sensor units (MSUs) and the
Meta-Alert Management System (MAMS) were first modeled

numerically, and the developed sensor models were then
evaluated on a realistic distribution feeder (the Electric Power
Research Institute (EPRI) J1 test feeder [7]) with a high
penetration of solar photovoltaic (PV) systems for two use
cases: DSSE and fault identification.

DSSE is the process of determining the operation states
of the power distribution network where limited measurement
data are available. DSSE is becoming increasingly important in
distribution networks, first because of the aforementioned rea-
sons of increasing DER penetrations in distribution systems;
and also because, unlike transmission system state estimation,
DSSE needs to handle challenges in observability, low x/r
ratios, unbalanced operation, communication issues, etc [8].
Therefore, this paper presents a DSSE algorithm that uses
line power flow and voltage measurement data from the EGM
sensors and evaluates network states efficiently to validate the
use of EGM sensors in providing real-time network situational
awareness to the system operator. Further, the advantage of
EGM sensors for fault identification is explored by generating
multiple scenarios of faults (single- and multiphase) and then
studying the responses of the MAS compared to traditional
schemes. Traditional schemes here refer to the typical utility
distribution protection schemes, where there are a few re-
closers and/or circuit breakers mostly on the primary feeder
network only. Additionally, there are mostly fuses on the
laterals and the secondary networks. This traditional scheme
is also referred as existing approach throughout this paper.

The rest of the paper is organized as follows: Section II
describes the EGM’s MAS, the selected distribution feeder,
the DSSE and the fault identification use cases, and sensor
placement on the feeder. Section III shows the result analysis
from the simulation studies, and Section IV summarizes the
performance evaluation of EGM’s MAS.

II. GRID SIMULATION WITH META-ALERT SYSTEM
A. Meta-Alert System

The MAS is a technology solution for the electric grid
that offers real-time field monitoring and advanced analyt-
ics capable of generating useful information for operation,
maintenance, and engineering. It comprises MSUs attached
to grid lines, communication adaptor units, and a MAMS at
the control center. Multivariate sensors of the system attached
to the grid provide real-time field measurements, monitoring,
and event alert notifications. The distributed MSUs sense
electrical parameters—such as current, voltage, frequency, and
power— and output measurement reports as well as alarm
notifications when applicable. The MAMS analyzes the reports



and event alarms received from the distributed MSUs and
detects anomalies, develops visualizations, and suggests ap-
propriate correction measures. In addition, the MAS is capable
of measuring real time environmental information such as
cable and ambient temperature, leakage detection and power
imbalance. Further information on the MAS is available in [5].

Sensor and MAMS Modeling: A simplified software-based
model of the MAS is developed for the simulation studies in
this paper. The developed sensor model has the capabilities
to output measured electrical parameters, such as root-mean-
square (RMS) current, RMS voltage, frequency, and power
factor. Additionally, it issues electrical reports and energy
meter reports for a predefined time period, and it issues alarm
notifications indicating abnormal behavior. Fig. 1 presents an
example visualization of how the MAMS analytics estimates
the fault type and location. A fault was applied at one line
on the EPRI J1 feeder [7] used in this paper, and as a result,
events were issued at different sensors. The different colors
represent the voltage and current events issued. Each voltage
and current event constitutes multiple states of voltage and
current at the location.
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Fig. 1. Fault detection and identification visualization.

B. Use Case 1: Distribution System State Estimation

To evaluate the effectiveness of the EGM sensors in en-
abling DSSE using only a limited number of measurement
nodes, we use the following mathematical model based on a
mixed-integer weighted least square optimization:
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where E is the set of lines; IV is the set of nodes; Pf] and
ﬁj are the active/reactive power flows in the line ij; p; and

q¢ are the active/reactive power injections at node i; r;; and

x;; are line ¢5’s resistance and reactance; b;; is a binary value
denoting the presence of EGM sensors on the line ij; B is
the EGM sensor budget; R-tj?mws, Qf}mws and v tmeas are
the values measured by the EGM sensors; T is the set of time
steps at which the measurements are recorded from the EGM
sensors; ¢ are the measurement variances; and Ny is the set
of nodes with no active/reactive power injections.

The minimization function (1) is a maximum likelihood
estimation problem, subjected to the power flow constraints
given by the DistFlow equations [9] as well as the constraints
of zero-power injection at nodes known to the system operator.
In the optimization model (1)-(7), the decision variables are
bij, P” and Q”, while E, N, ¢, 7i;, 5, and B are given
parameters. Noting the non-convexity of the aforementioned
problem, we employ the binary particle swarm optimization
algorithm (BPSO) [10] to determine the binary values, b;;,
which will determine the lines at which the EGM sensors
need to be present for maximum DSSE accuracy. BPSO is
a discretized implementation of the continuous-space particle
swarm optimization and uses the swarm intelligence concept,
where a swarm of multiple solutions are iteratively evolved
based on local and global function evaluations. The reader is
referred to [10] for more details on the algorithm.

C. Use Case 2: Fault Identification

This use case considers a single-line-to-ground (SLG) fault,
a double-line-to-ground (LLG) fault, and open-circuit fault
identification. Three different analyses are considered to eval-
uate the fault identification use case:

o Analysis 1 : Random distribution of hundreds of faults on
the feeder and calculate the percentage of faults detected.

o Analysis 2 : Apply a type of fault at a location on the
feeder and evaluate the performance of each scenario with
metrics. Table I provides the list of metrics considered for
Analysis 2.

o Analysis 3 : Conduct Analysis 2 for all the fault scenarios
in Analysis 1.

Heuristic Sensor Placement: Several factors influence
the sensor placement, such as the network topology, cost of
sensors, and application or use case—e.g., fault detection,
state estimation, loss determination, and asset monitoring.
Depending on these factors, sensors can be spread out through
the network, or they can be clustered to some specific areas
of interest. There are some rules/recommendations defined
by EGM to place the sensors on the grid: (1) Sensors are
placed on each phase, and the MAMS recognizes that relation;
(2) Place the sensors before splits of the feeder for better
detection resolution; or (3) Maintain the defined minimum
distance between any two sensors. The best sensor location
highly depends on the use case. For example, to detect more
numbers of open-phase faults, sensors should be allocated
toward the lateral branches in addition to major junction nodes.
Fig. 2a and Fig. 2b show two sensor deployment scenarios
(10% sensors) in the J1 feeder.

The performance metrics for analyses 1-3 are then com-
pared for the following scenarios.

o S1: Traditional approach without EGM sensors



TABLE I
PERFORMANCE EVALUATION METRICS FOR ANALYSES 2 AND 3.
Performance metrics D

Total feeder energy within the simulated time frame
(hours/days)

Total energy not served due to fault

(Energyanormat — Energyarauit)

Time consumed to restore the power back to normal condition
after the crew spots the exact fault location

Time from the start of the fault to normal operation

Time taken to identify the location of fault

Energy (kWh)

Energy lost (kWh)

Fault clearing time

Total restoration time
Fault location identification time

(@ (b)

Fig. 2. 10% sensor deployment Scenarios; (a) sensors are placed mostly on
the major lines and at junction points, (b) sensors are placed at some end
lines (lateral branches) in addition to junction points.

o S2: Heuristic placement of EGM sensors on 10% of the
lines on the feeder (34 sensor units)

e S3: Heuristic placement of EGM sensors on 20% of the
lines on the feeder (69 sensor units)

ITI. SIMULATION RESULTS AND ANALYSES

Outcomes and analyses from the simulation are presented
in this section. Table II presents the threshold value fed to the
sensor model to detect different event parameters.

TABLE I
THRESHOLD VALUES DEFINED TO DETECT ABNORMAL EVENTS BY THE
SENSORS IN THE J1 FEEDER SIMULATION.

Parameter Threshold

No current Less than 2 A

No voltage Less than than 50 V

Overcurrent  Exceeding 700 A

Overvoltage  Greater than 30% feeder nominal voltage

A. Use Case 1: Distribution System State Estimation

To analyze the effectiveness of the optimal sensor placement
model presented in (1)-(7), two scenarios were simulated:
1) DSSE with random placement of EGM sensors on 10%
of the lines, and 2) DSSE with optimal placement (based
on (1)—(7)) of sensors on 10% of the lines. Further, each
simulation was run for 1000 seconds, and line flows and node
voltage measurements, i.e. Pijfmeas, Qﬁ}meas and vf"meas, were
recorded for each line and corresponding nodes of the system
at every time-step ¢ with 1 second granularity. Because the
EGM sensors are assumed to be placed only at 10% of the
lines, the accuracy of the state estimation is affected by the
set of lines which actually have the sensors. This accuracy is

calculated in terms of mean-squared error at each node ¢ at a
time-step ¢, Error!, as follows:
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where k is a neighboring node connected to the node ¢, i.e.
k: (i k) € B PLectel @haetual and ob*™o! are the actual
power flow and voltage values at the lines and the nodes of the
system; and P4, Q% and v!* are the estimated power flow
and voltage values at the lines and the nodes of the system
after solving the optimization model (1)-(7) by substituting the
boolean variables b depending on the scenarios of random or
optimal placement.

Fig. 3a and Fig. 3b show the plots for the mean-squared
error Error! for each node, along with the average error
across all the nodes, for each second of the simulation. It
can be seen that for the random sensor placement scenario,
the Error! plots have larger values when compared to those
plots for the optimal sensor placement scenario. Indeed, it
is observed that with random sensor placement, the average
mean-square error over 1000 seconds is 0.0771%, whereas
with optimal sensor placement, the average mean-square error
is 0.0486%. Therefore, the optimization model presented in
(1)-(7) can be used to select sensor locations for a distribution
system to get maximum DSSE accuracy given a sensor budget.
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Fig. 3. DSSE error plots with (a) random and (b) optimal sensor deployment
on 10% of the lines.

B. Use Case 2: Fault Identification

1) Analysis 1: For Analysis 1, first, we randomly dis-
tributed 500 SLG faults one at a time on the J1 feeder, and
conducted respective simulations to identify whether the fault
is detected by the system. The simulation was conducted
separately for all three scenarios: S1, S2, and S3 calculating
the percentage of faults detected. A similar process was done
considering 300 LLG faults and 300 open-phase faults. Fig. 4
shows the percentage of faults detected for all three types of
faults and three scenarios. It shows that approximately 97% of
the SLG faults were detected with the help of MAS, whereas
the traditional approach was able to detect only 49% of
those faults. Likewise, 100% of the LLG faults were detected
with the MAS. On the other hand, open-phase fault detection
depends on the number of sensor units placed. It requires a
larger number of sensors than the two other fault types to



TABLE III
OPEN-PHASE FAULT DETECTION PERCENTAGE CHANGE WITH CHANGE IN
DEPLOYMENT AND NUMBER OF SENSORS

Scenario
Existing/ With 10% EGM With 20% EGM
traditional approach | Deployment | Deployment | Deployment | Deployment
Scenario 1 Scenario 2 Scenario 1 Scenario 2
% of open-phase
faults detected 0 34% 39% 44% 46%

detect more faults. It is evident from this analysis that the
MAS deployment on the distribution feeder provides more
observability of the faults than the traditional approach.

96.8% 96.8% 100% 100%

100% 94% Existing approach
20% W 10% EGM
) 20% EGM
60% | a9%
42.4%
40% 33.2%
20% I
0%
0% 2
Line-to-ground L-L-G Open phase
Fault type

Fig. 4. Percentage of faults detected under each scenario for three different
fault types.

Table III shows the change in open-phase fault detection
percentage with varying placement and number of sensor
units. It was observed that placing the sensors on the lateral
branches in addition to some main junction points would yield
a higher percentage of detection rather than allocating the
sensors only to the junction points, given a limited number
of sensors. Moreover, increasing the number of sensors would
also increase the ability to detect more open-phase faults.

2) Analysis 2: Analysis 2 considers 1 day of simulation
where a fault occurs at a location at some point of the day,
and several time period assumptions are considered for the
notification, identification, and clearing of the fault based on
the data reported in reference [11]. Fig. 5 presents the timeline
considered in this analysis for a traditional grid and the grid
with MAS. The timeline in the figure represents the maximum
time considering the worst-case scenario.

Total Consumer Qutage > 3 to 5 hours
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Arrival at
nearest SS

! Drive out to find |
lexact fault location

] Dispatch of crew
 Time for customers to
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Normal 43— ! ! !
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Fault occurrence and outage time when MAS placed on the grid

Fig. 5. Fault detection time frame for Analysis 2, reference [11]

A SLG fault was applied at the location marked in red on
the lower right network plot in Fig. 6. Reclosers were placed
at the green marked locations to represent the traditional grid
system, where reclosers are the components that notify the

fault occurrence by opening and closing the circuit in response
to high fault currents.

Performance evaluation 10% sensor placement
Analysis 2 . /

Baseline (normal operation) Energy measurement (kWh) = 109,786

Fault condition
(existing/traditional approach)

Energy lost (kWh) = 24838

Fault clearing time = 45 min

total restoration time = 5.75 hour

Fault location identification time = 4 hour

Fault condition (10% EGM
sensor placement)

Energy lost (kWh) = 7710
Fault clearing time = 45 min e
total restoration time = 1.8 hour )
Fault location identification time = 3 min

—.
Controlled /‘
Switch /’

.

Fault condition (10% EGM
sensor placement with control)

Energy lost (kWh) = 1476
Fault clearing time = 45 min
total restoration time = 1.8 hour /
Fault location identification time = 3 min <

Fig. 6. Analysis 2 result metrics comparison. Fault clearing time refers to the
time consumed to restore the power back to normal condition after the crew
spots the exact fault location. Total restoration time is the total time from the
start of the fault to the normal operating condition.

Fig. 6 shows the performance metrics calculated for Sce-
nario 1 and Scenario 2 compared to the no-fault scenario
(baseline). Clearly, having the MAS on the feeder significantly
reduced the energy loss (energy not served) compared to the
loss in the traditional approach. When the MAS is able to
detect the fault, the location of the fault is spotted immediately,
within minutes, after the repair crew reaches the estimated
location. However, with the traditional approach, there could
be little to no visibility into the distribution grid. So, first
the crew arrive at the nearest substation and then check
several points through the feeder before finding the exact fault
location. That could take hours (approximately 4 hours in the
given simulation condition) to pinpoint the fault. So the MAS
here helps restore power much faster. Additionally, another
scenario was simulated here to demonstrate the coordinated
operation capability of the MAMS with the utility control
system (e.g., advanced distribution management system). In
this scenario, we considered that the utility has an advanced
control unit that can take signals from the MAMS and sends
the command to controlled switch/es to operate immediately.
This could help to further reduce the energy loss from outage.
Fig. 7 demonstrates the feeder total active power on the day
for the considered scenarios.
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Fig. 7. Total feeder power of the day for the different scenarios considered
in Analysis 2.

3) Analysis 3: Analysis 3 is the combination of both
Analysis 1 and Analysis 2. A total of 300 individual SLG fault
occurrences were simulated at selected random times within
a day to evaluate the performance with the predefined met-
rics. The statistical distribution of the performance metrics—



namely, the total restoration time, total energy, and energy
loss—are represented by the violin plots shown in Fig. 8 and
Fig. 9. These distribution plots (violin plots) represent the
300 instances of data (corresponding to 300 different SLG
faults). The wider area of a violin plot suggests that more data
are concentrated around those regions, and the narrow area
suggests the opposite. The total restoration time distribution
in Fig. 8 shows a significant reduction in average time in the
scenario with EGM compared to the traditional fault location
method. The lower total restoration time with EGM implies
a faster recovery from the fault events and therefore lower
energy loss (energy not supplied).

> ~

@

Total restoration time (h)
w s

N
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With EGM
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Fig. 8. Total restoration time distribution.

Comparing the distribution of the total energy supply of the
traditional method to the method with the EGM sensors, the
total energy supply data in the EGM method are in a higher
range. The higher the total energy, the fewer customer outages.
Similarly, the energy loss reduced, which means comparatively
more energy was delivered, as shown in Fig. 9.
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Fig. 9. Total energy and loss with and without the MAS.
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The comparison of the minimum, maximum, and average
energy loss, Fig. 10a, and total restoration time, Fig. 10b,
for the traditional method and with the EGM on the grid
clarifies that the EGM system is effective at faster fault
detection, identification, and restoration. This analysis implies
that installing the EGM’s MAS on the distribution grid could
save a lot of money for utilities facing frequent fault issues.
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Fig. 10. Minimum, maximum, and average energy loss and restoration time.

IV. CONCLUSION

In summary, this paper presents simulation studies to
demonstrate the benefits of EGM’s MAS on a distribution
grid. The sensor and MAMS capabilities were first numerically
modeled to investigate the DSSE and fault identification use
cases. The simulation studies demonstrated that EGM’s MAS
can provide significantly improved DSSE accuracy with only
a small number of lines with the sensors and the studies
showed a significant increase in fault detection speed and
accuracy, reduced down time, reduced energy lost as a result
of faults, and improved customer load availability compared to
traditional schemes. The EGM system was able to detect open-
phase faults with good accuracy—these types of faults could
not be detected by the traditional communication protection
schemes modeled in the paper, and they can cause significant
equipment damage if they are not cleared quickly. These
improvement will help utilities provide reliable power to
customers and save costs.
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